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Abstract—As one of the most popular ways for Wi-Fi based
indoor localization, the received signal strength (RSS) can provide
us localization results with accuracy proportional to the quality
of Wi-Fi database collection. In this paper, we collected two Wi-Fi
databases using human and robot respectively. The experiments
are conducted on the 3rd floor of Atwater Kent laboratory. Based
on the two databases, we use an offline process to generate Wi-Fi
RSS maps which can be used to estimate any arbitrary position.
Furthermore, a comparison of the performance of different
localization algorithms based on different databases are provided
and analyzed.

Index Terms—Wi-Fi, indoor localization, robot, database col-
lection

I. INTRODUCTION

With the guide of location aware applications, navigation in
indoor environment is possible [4]. The performance of navi-
gation highly depends on the accuracy of the localization. This
dependency indicates that higher accuracy localization work is
one of the best promises to higher profits of the applications
[8]. However it is obvious that the easiest improvement of
the accuracy of localization can be gained directly by more
meticulous war driving which needs the companies to pay
more for human labor. Even though the step by step RSS
database collection is able to be completed, the expenses
on this particular one war driving will go extremely high if
such hard working is considered and admired. Finally, the
catastrophe to such RSS database collection is that the indoor
environment that users to localize inside are almost everywhere
all over the world. Such scenario obviously violated the basic
survival rule of all of the companies.

We propose to use simultaneous localization and mapping
(SLAM) [6] based on robot to replace human resources in
the war driving. However, robot can not be that accurate as
human because of the limitations of sensor accuracy which
indicates that error in robot is not avoidable. In this paper, we
are contributing efforts to analyze such error. Based on the
prior knowledge of the error coming from the robot sensors,
the performance of different localization algorithms such as
kernel method or nearest neighbor using database collected
by robot can be analyzed. Meanwhile, similar performance
analysis can be done based on the database collected manually.
At end, we will make a conclusion on the possibility of the
replacement of human with robot in RSS database collection.

The rest of the paper is organized as follows. Section II
illustrates the methodologies of our experiments. It gives out

a brief introduction of the error from the odometry sensor.
Then we give out the process of the collection of Wi-Fi
databases, one collected by human while another by robot.
After the collections of the databases, a so called offline
process is implemented based on the data from the databases.
Finally two algorithms including K-nearest neighbor(K-NN)
and kernel method are implemented on both databases to
localize a mobile device with RSS reading in it. Section III
showed part of our experiment results. The error we calculated
from different database with different algorithm are listed in
table I. Finally, a brief conclusion and possible future work
are claimed in section IV.

II. METHODOLOGIES

A. Simultaneous Localization and Mapping (SLAM)

Dealing with both of localization and mapping is a dilemma
until simultaneous localization and mapping (SLAM) was
proposed. Basically iterations including a prediction and a
observation process are implemented in SLAM solution. The
prediction process is

xv(k + 1) = Fv(k)xv(k) + uv(k + 1) + wv(k + 1) (1)

where xv(k) = [xk, yk, θk]
T is the position state of the robot,

Fv(k) is the state transition matrix, uv(k) is the vector of
control inputs and wv(k) is the vector of uncorrelated process
noise errors with zero mean and covariance Qv(k).

In equation (1), the state vector x(k) contains not only the
information from the state of the robot but also the location
information from all landmarks. Thus x(k) can be expanded
as x(k) = [xTv (k) p

T
1 ... pTn ]

T , n ∈ [1, N ] where N is the total
number of landmarks. For the observation model, the process
can be written as

z(k) = Hix(k) + vi(k) (2)

where vi(k) is a vector of uncorrelated observation errors with
zero mean and variance Ri(k) and Hi is the observation matrix
that relates the sensor output zi(k) to the state vector x(k)
when observing the ith landmark.

B. Sensor Evaluation

To replace human with robot in RSS collection, it is nec-
essary to be clear how inaccurate the robot is. The coordinate
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Fig. 1. 2D floor layout for Atwater Kent building, WPI.

(a) Measurement by robot (b) Measurement by human

Fig. 2. Experimental Setup: Wi-Fi signal strenght reading collection

information we got from the robot is the information from
odometry sensor which accumulate the error. We place the
robot on the 3rd floor of Atwater Kent (AK) building whose
map is shown in Fig. 1 in Worcester Polytechnic Institute
(WPI), and experimented on its error. The robot is drifting as
it goes along, but the error in the whole travel is acceptable.
The error introduced by the drift is included in the following
discussions.

C. Database Collection

To evaluate whether robot based RSS collection provides
accurate database to support localization, two databases are
collected. The first one is collected by human with cellphone,
and the second one is collected by robot. In case of the shadow
fading brought by people walking around in the building,
we collected these two databases with multiple samples to
compensate the human shadowing effect. A mobile device
is used to record the Wi-Fi signal data. As for robot based
RSS collection the robot carried the device walking through
the whole building with SLAM [9], meanwhile all of the
RSS information is recorded in the mobile device associated
with its coordinate information using timestamp. Since indoor
environment is very complicated, there might be interference
coming not only from multipath but also from RF source.
Therefore, we selected out 12 MAC addresses which are the
ones that can be observed at all of the positions to promise
the quality of further localization. We draw the estimation path
and the ground truth approximately on Fig. 1. The 8 black stars
in the map are the positions that have the highest probability
to be selected as RSS manual measure positions in such an
environment.

D. Offline Process

Traditionally, the blind spots in the database are treated as
-99 dBm which is much lower than the actual reading, or even
the minimum value of the observed RSS [7]. Instead of treating
them as -99dBm, our approach is to use Gaussian process [2]
[1] to generate the RSS Map for each candidate AP. We build
11 modes based on the different reference points, and for each
mode, we select proper access points to do Gaussian process
to calculate the mean for each reference points.

Gaussian Process (GP) is a stochastic process where every
variable has a Gaussian distribution and the variables have a
jointly Gaussian distribution. Here these variables are the RSS
for each reference location. The data is as

D = (x1, y1), (x2, y2), · · · , (xn, yn) (3)

where x is the 2-Dimentional location information, y is the
received signal strength indicating for one Wi-Fi access point.
We assume

yi = f(xi) + ε (4)

In equation (4) yi is related to xi by some function f with
noise in it as ε ∼ N(0, σ2

n). We assume that the covariance of
the function values at different points is correlated and that the
covariance of f(xi) and f(xj) is defined by xi and xj with
a kernel function. We choose the squared exponential kernel
function which is shown as following:

cov(f(xi), f(xj)) = K(xi, xj) = σ2
fexp(−

|xi − xj |2

2l2
) (5)

where σ2
f is the signal variance, and l is the length scale for

the strength of correction between positions. Take the noise
into consideration, we have the covariance over the whole
observations Y : cov(Y ) = K + σ2

nI where K is the n × n
covariance matrix of X, Kij = K(xi, xj), I is n× n identity
matrix, and σ2

n is the variance of observation error ε. the jointly
Gaussian distribution is

Y ∼ N(0,K + σ2
nI) (6)

Up to now, we have three parameters θ = σf , σn, l. Based
on the hypothesis of these parameters, the probability density
function of Y in condition of X and θ is

P (Y |X, θ) = 1√
(2π)n|cov(Y )|

exp(−1

2
(Y )T cov(Y )−1Y )

(7)
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Fig. 3. relationship between RSSI and position (RSSI map)

2016 IEEE International Conference on Consumer Electronics (ICCE)

978-1-4673-8364-6/16/$31.00 ©2016 IEEE378



θ can be estimated by maximizing the probability equation
(7). With the parameters, we can generate a map constructed
by the signal strength readings for each access point and the
location information. With such an RSSI map, if we further
hope to find out the function f∗ for any arbitrary position
x∗, some new datum should be interpolated into our training
dataset. Therefore, the jointly Gaussian distribution can be
further given as(

Y

f∗

)
∼
(

0,

cov(Y ) K∗
KT

∗ K∗∗

 ) (8)

The posterior predictive distribution is

p(f∗|x∗, X, Y ) = p(f∗|u∗, y∗) (9)

where u∗ = KT
∗ cov(Y )−1Y , v∗ = K(x∗, x∗) −

KT
∗ cov(Y )−1K∗
All of the notations with star are referring to the updated

value. Fig. 3 is a 23m× 17m RSSI map for one access point
with 48 reference points. A similar plot on the uncertainty
variance versus position can also be obtained which is not
shown because of page limitation. Intuitively the closer the
testing point is to the training point, the lower uncertainty
it has. Now in the following Wi-Fi localization algorithm
implementations, all of the blind spots should be filled using
Gaussian process prediction.

E. Algorithms for Wi-Fi Localization

After the databases are available for localization, some
algorithms can be implemented based on the data. In our
experiment, we compared Gaussian kernel method and K
nearest neighbor which are two most widely used ones. [5]

1) Guassian Kernel Method: Gaussian kernel method is a
statistical approach. [10]

Kernel method firstly defines a mass probability distribution
function based on RSS database. The function is given in
equation (10).

K(O,Onm) =
1

(
√
2πσ)K

e−
1

2σ2

∑M
m=1 (pm−pnmk)

2

(10)

Assume the difference between the measurement at the same
position follows Gaussian random distribution, then the joint
probability density function of observation and measurement
can be calculated in equation (11)

p(O|ln) =
1

M

K∑
k=1

K(O,Onm) (11)

Further, from Bayes rule, we know that p(ln|O) =
p(O|ln) · · · p(ln) 1

p(O) = η · · · p(O|ln)
Thus the estimation of the location can be calculated as the

expectation of the coordinates based on the RSS information.
To eliminate the impact brought by the selection of σ, an
algorithm called Gaussian Process (GP) is introduced [3].

2) K Nearest Neighbor (K-NN): Nearest neighbor is a more
intuitive approach to localize the mobile device. If the power
reading at an unknown position is available, the distance metric
for each reference points (RPs) can be formed as

dn =

√√√√ M∑
m=1

(pn − pn,m)2, n = 1, 2, ...N (12)

According to the distance in the vector above, the location
of RP that has the minimum distance is intuitively believed
as localization result. This algorithm is obviously not precise
enough, thus K nearest neighbor which can average the result
of K nearest RPs is introduced to improve its performance.
We propose to use weighted average whose weights of belief
are calculated as w = arctan 1

dn
.

III. EXPERIMENT RESULTS

In table I, the localization average error of kernel method
and K nearest neighbor (K-NN) based on different database
are listed with unit of meters. A similar table representing
the variance of error can also be created which is not listed
because of page limitation. The number of reference points
which are uniformly distributed along the four edges increases
from 4 to 58 with step size 4. Also the positions that we
hope to localize are uniformly distributed along the edges as
well. When we are implementing K-NN, we experimented the
algorithm with K varying from 1 to 4so that we can seek
a value of K that can provide us better performance. In the
following parts, we will firstly separate the tables into two
parts based on database, then we will analyze along both
horizontal and vertical directions. The horizontal comparison
is basically the performance comparison of algorithms, and the
vertical observation is the analysis of the relationship between
the performance and the number of RPs.

A. performance of human database

For the left part of the table I, only the first 4 rows
are available. The NA terms in the table coming from the
limitations of labor based war driving.
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TABLE I
AVERAGE ERROR COMPARISON WITH DIFFERENT ALGORITHMS BASED ON DIFFERENT DATABASE

number of RP database collected by human database collected by robot
kernel NN 2-NN 3-NN 4-NN kernel NN 2-NN 3-NN 4-NN

4 corner 2.49 4.85 2.90 4.66 6.99 4.06 6.11 3.23 4.13 5.49
4 center 5.36 5.40 5.84 7.51 9.10 4.67 5.89 4.65 5.96 7.03

8RP 4.25 5.70 3.47 5.15 6.40 5.54 5.77 5.14 4.68 4.19
12RP 2.80 3.30 3.30 3.13 3.39 2.98 3.76 3.07 2.98 3.10
16RP NA NA NA NA NA 2.92 3.30 3.42 3.11 2.95
20RP NA NA NA NA NA 2.88 3.31 3.19 3.39 3.04
24RP NA NA NA NA NA 3.05 3.57 3.13 3.34 3.19
28RP NA NA NA NA NA 3.06 3.22 3.11 3.29 3.34
32RP NA NA NA NA NA 2.99 3.23 3.11 3.10 3.16
40RP NA NA NA NA NA 2.96 3.20 2.98 2.95 3.01
48RP NA NA NA NA NA 3.03 3.12 2.91 3.04 3.04

1) horizontal analysis: Focus on the first 4 rows on the left
part of the table, we can observe that based on the mean of
error generally the best performance can be achieved using
3-NN. 4-NN can not provide ideal performance because the
number of reference points is too small. This also indicates
that if there are not enough reference points, K should not
be selected too large. Additionally, kernel method can provide
medium performance. Generally speaking, 3-NN can provide
best performance, 2-NN can perform closely to 3-NN. Kernel
method is worse than 3-NN and 2-NN, but it is better than
4-NN. We can roughly conclude that 3-NN is more suitable
for human database based localization because there are few
number of reference points.

2) vertical analysis: If analyze along the vertical direction,
we can observe that for a specific algorithm, the performance
is increasing with the increment of the number of reference
points. We have already known that 3-NN can perform best
from the analysis before, but we can notice that lowest local-
ization average error is 3.8 meters and the standard variance
is 2.5.

B. performance of robot database

1) horizontal analysis: For nearest neighbor, we can ob-
serve that when the number of reference points is smaller than
10, 2-NN and 3-NN can provide us lower error. The reason
that 4-NN have larger error is the limitation of the number
of RPs which has already been illustrated before. When the
number of RPs falls in the interval between 10 and 30, we can
see that the cluster of NN algorithms perform closely while
kernel method is better because of our offline process. When
the number keeps increasing, 2-NN can provide us the lowest
error while the others are close to each other. Thus we can
roughly conclude that if we compare the performance of the
algorithms, K-NN is more suitable if we have enough RPs
because it has smallest error and best stability.

2) vertical analysis: Intuitively, the performance will in-
crease with the increment of the number of reference points.
At first, when the reference points are distributed sparsely,
the error will decrease greatly when the number of reference
points increases which can be seen in Fig. 4 before the number
of RPs getting closer to 10. After that, the decrease of error
can still be observed but it is not that obvious any more.
Finally, we can see that the best performance provided by the

robot collected database is 2.8 meters error and 1.5 standard
variance which are much smaller than those provided by
human collected database.

IV. CONCLUSION

In this paper, the performances of localizations based on
RSS databases collected by human and robot are compared.
Even though sensor error will be introduced into localization
accuracy based on robot database collection, the overall per-
formance of localization is good to indicate the replacement
of human war driving with robot is reasonable.
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